The aim of the present study is to reconstruct sedimentary conditions of Middle Jurassic rocks that contain siderites to identify the mineral composition of the inserbeds and to recognize the origin of the siderite. Thin inserbeds of siderite rocks occur most frequently within Bajocian siliciclastic deposits and, more rarely, Aalenian and Bathonian. The research material comes from 11 boreholes located in the north and northeastern margins of the Holy Cross Mountains. The research methods included sedimentological analyses, and studies in polarizing and scanning electron microscopes, staining of carbonates, cathodoluminescence, X-ray structural analysis, and stable carbon and oxygen isotopic determinations were used. Middle Jurassic sideritic rocks are most often represented by clayey siderites, which also include muddy and sandy varieties and siderite sandstones. There are also local occurrences of coquinas, claystones, mudstones, and siderite conglomerates. The main component of sideritic rocks is sideroplesite. Berthierine, pistomesite, calcite, and ankerite are important components, too. The action of diagenetic processes of cementation, compaction, replacement, and alteration within the Middle Jurassic deposits was most intense during the eo- and mesodiagenesis. The sedimentological analysis showed that most of the studied siderites were formed in a low-oxygenated marine environment, mainly in the transition zone between the normal and storm wave bases and in the lower and middle shoreface zones. The results of the petrographic, mineralogical, and geochemical studies indicated the origin of the sideritic rocks mainly in the marine environment, with the participation of meteoric water. There were slight differences in the chemical composition of sideroplesite depending on the environment it crystallized in. There was no correlation between the values of the carbon isotope determinations in the sideroplesite and the environmental conditions of its crystallization. Slight differences were visible in the case of the average values of δ18O in the sideroplesite.