Phytoplankton variation in large shallow eutrophic lakes is characterized by high spatial and temporal heterogenity. Understanding the pattern of phytoplankton variation and the relationships between it and environmental variables can contribute to eutrophic lakes management. In this study Taihu Lake, one of the largest eutrophic fresh water lake in China, was taken as study area. The water body of Taihu Lake was divided into five regions viz. Wuli bay (WB), Meilian Bay (MB), West Taihu Lake (WTL), Main Body of Taihu Lake (MBTL) and East Taihu Lake (ETL). Concentrations of chlorophyll-a and the related environmental variables were determined in each region in the period 2000-2003. Factor analysis and multivariate analysis were applied to evaluate the interactions between phytoplankton variation and environmental variables. Results showed that the highest average concentrations of TN, TP and Chl-a were observed in WB, followed in a descending order by MB and WTL, and the lowest concentrations of TN, TP and Chl-a were observed in MBTL and ETL. Chl-a and TP concentrations in most regions (except ETL) declined during the study period. It suggested that to some extent the lake was recovering from eutrophication. However, persistent ascending of TN and NH(4)-N in all five regions indicated the deteriorating of water quality in the study period. Results of multivariate showed that the relationships between phytoplankton biomass and environmental variables varied among regions. TP illustrated itself a controlling role on phytoplankton in WB, MB, WTL and MBTL according to the significant positive relations to phytoplankton biomass in these regions. Nitrogen could be identified as a limiting factor to phytoplankton biomass in ETL in view of the positive correlations between TN and phytoplankton and between NH(4)-N and phytoplankton. Spatial variation of interactions between phytoplankton and environmental parameters suggested proper eutrophication control measures were needed to restore ecological system in each region of Taihu Lake.
Read full abstract