A novel approach called Modified Invasive Weed Optimization (MIWO) technique has been developed and combined with the Perturb and Observes (P&O) algorithm to enhance the extraction of maximum power from photovoltaic (PV) panels in the presence of partial shading conditions. The conventional P&O algorithm falls short in extracting the maximum power from PV systems under partial shading conditions due to the existence of multiple maximum points. In such scenarios, optimization techniques can be employed to search for the global maximum point. The proposed MIWO-based P&O algorithm updates the reference voltage to ensure that the PV system operates at the Maximum Power Point (MPP) based on the prevailing weather conditions. This MIWO based PV system is further fed to water pumping system. A PV-based water pumping system is utilized for both irrigation and domestic purposes. Additionally, a sensorless vector control-based induction motor is employed in this study to drive the pump. The objective of this research is to demonstrate the achievement of an efficient PV-based water pumping system without the need for battery storage. Various results based on MIWO are compared with PSO and GWO. The results are presented based on various water pumping applications and the availability of solar irradiance during rapid climate changes. MATLAB/Simulink simulations, along with hardware-based experiments, are provided to validate the effectiveness of the proposed method under both transient and steady-state conditions.