Sexual differentiation is an important developmental phenomenon in cucurbits that directly affects fruit yield. The natural existence of multiple flower types in melon offers an inclusive structure for studying the molecular basis of sexual differentiation. The current study aimed to identify and characterize the molecular network involved in sex determination and female development in melon. Male and female pools separated by the F2 segregated generation were used for sequencing. The comparative multi-omics data revealed 551 DAPs and 594 DEGs involved in multiple pathways of melon growth and development, and based on functional annotation and enrichment analysis, we summarized four biological process modules, including ethylene biosynthesis, flower organ development, plant hormone signaling, and ubiquitinated protein metabolism, that are related to female development. Furthermore, the detailed analysis of the female developmental regulatory pathway model of ethylene biosynthesis, signal transduction, and target gene regulation identified some important candidates that might have a crucial role in female development. Two CMTs ((cytosine-5)-methyltransferase), one AdoHS (adenosylhomocysteinase), four ACSs (1-aminocyclopropane-1-carboxylic acid synthase), three ACOs (ACC oxidase), two ARFs (auxin response factor), four ARPs (auxin-responsive protein), and six ERFs (Ethylene responsive factor) were identified based on various female developmental regulatory models. Our data offer new and valuable insights into female development and hold the potential to offer a deeper comprehension of sex differentiation mechanisms in melon.