Brassinolide (2 alpha, 3 alpha, 22 alpha, 23 alpha-tetrahydroxy-24 alpha-methyl -B-homo-7-oxa-5 alpha-cholestan-6-one), a novel plant growth-promoting steroid isolated from rape pollen, and its hitherto unknown 22 beta, 23 beta-isomer were synthesized from a C-24 epimeric 60:40 mixture of 22-dehydroxampesterol (24 alpha-methyl) and brassicasterol (24 beta-methyl) from oysters. The method of synthesis favored the formation of the 22 beta, 23 beta-isomer by better than 4:1. Comparative plant growth-promoting capabilities of brassinolide, both natural and synthetic, and its three side chain cis-glycolic isomers in the bean second internode bioassay showed that the natural and synthetic brassinolides were equally active and caused splitting of the internode at the 0.1 microgram level. The least active was the 22 beta, 23 beta-isomer of brassinolide. The isomers with the 22 alpha, 23 alpha and 24 alpha, and the 22 beta, 23 beta and 24 beta configurations were highly active and were required at about 10 times the concentration of brassinolide to cause the same physiological response. In the bean first internode bioassay, an auxin-induced growth test system which employs isolated bean plant segments, the isomer with 22 beta, 23 beta and 24 beta configuration caused a greater response than brassinolide. Two of the four tetrahydroxy ketones obtained in the synthesis of the isomers were also active in both assays.