In this paper, we explore a pricing model for corporate bond accompanied with multiple credit rating migration risk and stochastic interest rate. The bond price volatility strongly depends on potentially multiple credit rating migration and stochastic change of interest rate. A free boundary problem of partial differential equation is presented, which is the equivalent transformation of the pricing model. The existence, uniqueness, and regularity for the free boundary problem are established to guarantee the rationality of the pricing model. Due to the stochastic change of interest rate, the discontinuous coefficient in the free boundary problem depends explicitly on the time variable but is convergent as time tends to infinity. Accordingly, an auxiliary free boundary problem is constructed, whose coefficient is the convergent limit of the coefficient in the original free boundary problem. With some constraint on the risk discount rate satisfied, we prove that a unique traveling wave exists in the auxiliary free boundary problem. The inductive method is adopted to fit the multiplicity of credit rating. Then we show that the solution of the original free boundary problem converges to the traveling wave in the auxiliary free boundary problem. Returning to the pricing model with multiple credit rating migration and stochastic interest rate, we conclude that the bond price profile can be captured by a traveling wave pattern coupling with a guaranteed bond price with face value equal to one at the maturity.
Read full abstract