Background.Consumption of plants such as Carica papaya grown around automobile workshops is common in big cities in Nigeria. However, little is known about the heavy metals contamination of these consumables due to the influence of automobile emissions during maintenance activities.Objectives.This study aimed to assess heavy metal concentrations in C. papaya and supporting soils around automobile workshops in Port Harcourt Metropolis, Rivers State, Nigeria.Methods.Seven automobile workshops were used for the present study. First, 20 m × 20 m quadrats were laid out for soil and C. papaya tissue sampling. One composite soil sample was collected from the topsoil (0–15 cm depth) around each of the automobile workshops. Three C. papaya stands at least 30 cm apart around each workshop were used for the study and from these stands, tissues (root, stem, leaf, fruit) of C. papaya were collected. Standard laboratory techniques were used to determine the pH, electrical conductivity (EC) and heavy metals (lead (Pb), mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn)) in the soil samples and C. papaya tissues. Pairwise t-test was used to determine significant differences (p<0.05) in the heavy metal concentrations in soil and C. papaya tissues between the sample and control sites, while correlation statistics were used to determine the relationship of heavy metal concentrations between soil and C. papaya tissues.Results.C. papaya tissues and supporting soil had significantly higher levels of pH, EC and heavy metals in the sampled plots than the control plot. The heavy metal concentrations in C. papaya and soil occurred in the decreasing order of Pb>Cu>Hg>Zn>Cd. The fruit of C. papaya had the highest mean concentrations of Pb (51.4±14.1 mg/kg) and Zn (26.4±1.9 mg/kg), while the leaf had the highest mean concentration of Hg (32.0±2.3 mg/kg). The pH, Cu and Zn in the supporting soil were significantly correlated with the levels in the C. papaya tissues.Conclusion.Bio-accumulation of heavy metals by C. papaya is evident around automobile workshops, and Pb, Hg, Cd concentrations were found to be above the permissible limits for human consumption according to World Health Organization (WHO) standards. Consumption of food materials grown around automobile workshops could pose health risks.