Electrically evoked compound action potentials (ECAPs) are used for intra-/postoperative monitoring with intracochlear stimulation of cochlear implants. ECAPs are recorded in MED-EL (Innsbruck, Austria) implants using auditory response telemetry (ART), which has been further developed with automatic threshold determination as AutoART. The success of an ECAP measurement also depends on the number of available spiral ganglion cells and the bipolar neurons of the cochlear nerve (CN). It is assumed that a higher population of spiral ganglion cell implies a larger CN cross-sectional area (CSA), which consequently affects ECAP measurements. Intraoperative ECAP measurements from 19 implanted ears of children aged 8 to 18 months were retrospectively evaluated. A comparison and correlation of ART/AutoART ECAP thresholds/slopes at electrodes E2 (apical), E6 (medial), E10 (basal), and averaged E1 to E12 with CN CSA on magnetic resonance imaging was performed. A Pearson correlation of the ART/AutoART ECAP thresholds/slopes for E2/E6/E10 and the averaged electrodes E1 to E12 showed a significant correlation. The CN CSA did not correlate significantly with the averaged ART/AutoART ECAP thresholds/slopes across all 12 electrodes. AutoART provides reliable measurements and is therefore a suitable alternative to ART. No significant influence of CN CSA on ECAP thresholds/slopes was observed. A predictive evaluation of the success of ECAP measurements based on CN CSA for a clinical setting cannot be made according to the present data.
Read full abstract