With the rapid development in mobile computing and Web technologies, online hate speech has been increasingly spread in social network platforms since it's easy to post any opinions. Previous studies confirm that exposure to online hate speech has serious offline consequences to historically deprived communities. Thus, research on automated hate speech detection has attracted much attention. However, the role of social networks in identifying hate-related vulnerable community is not well investigated. Hate speech can affect all population groups, but some are more vulnerable to its impact than others. For example, for ethnic groups whose languages have few computational resources, it is a challenge to automatically collect and process online texts, not to mention automatic hate speech detection on social media. In this paper, we propose a hate speech detection approach to identify hatred against vulnerable minority groups on social media. Firstly, in Spark distributed processing framework, posts are automatically collected and pre-processed, and features are extracted using word n-grams and word embedding techniques such as Word2Vec. Secondly, deep learning algorithms for classification such as Gated Recurrent Unit (GRU), a variety of Recurrent Neural Networks (RNNs), are used for hate speech detection. Finally, hate words are clustered with methods such as Word2Vec to predict the potential target ethnic group for hatred. In our experiments, we use Amharic language in Ethiopia as an example. Since there was no publicly available dataset for Amharic texts, we crawled Facebook pages to prepare the corpus. Since data annotation could be biased by culture, we recruit annotators from different cultural backgrounds and achieved better inter-annotator agreement. In our experimental results, feature extraction using word embedding techniques such as Word2Vec performs better in both classical and deep learning-based classification algorithms for hate speech detection, among which GRU achieves the best result. Our proposed approach can successfully identify the Tigre ethnic group as the highly vulnerable community in terms of hatred compared with Amhara and Oromo. As a result, hatred vulnerable group identification is vital to protect them by applying automatic hate speech detection model to remove contents that aggravate psychological harm and physical conflicts. This can also encourage the way towards the development of policies, strategies, and tools to empower and protect vulnerable communities.
Read full abstract