At on-line isotope separator facilities, rare isotopes of radioactive elements such as astatine, radium or polonium are demanded for fundamental research on nuclear structure. These elements are generally suitable for a resonance ionization laser ion source, but more data on the atomic structure is necessary to develop efficient laser ionization schemes. Due to the missing stable reference isotopes spectroscopic investigation of the atomic structure can only be performed during on-line operation. At the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF, the elements astatine and radium were investigated by in-source laser spectroscopy to optimize the laser ionization efficiency. For astatine, laser spectroscopy was performed to search for high lying bound states as well as for auto-ionizing resonances. This led to the identification of four new high lying bound states of odd parity, while no auto-ionizing resonances were observed in the investigated region. Furthermore, the feasibility and the impact of laser ionization on the yield of radium isotopes was investigated using an activated target after proton irradiation.