AbstractThe paper contains a detailed analysis of the formation of an auroral spiral based on hitherto not published observations by the all‐sky camera in Kilpisjärvi, Northern Finland. We conclude that spirals appearing during a substorm form by a modification of the interface between tail and magnetosphere, the location of the generator current of the westward electrojet. Driven by the arriving flow bursts, this current is subject to ruptures by the appearance of a sequence of hook‐like structures. These structures can move eastward with speeds up to 3 km/s. The propagation is attributed to a constructive magnetic fracture process driven from behind by the power of the arriving flow bursts. Poleward bending and extension of a hook‐like structure, followed by a turning to the west and then equatorward, is the first step in spiral formation. It becomes the primary spiral arm, if a poleward arm grows out of weaker auroral structures, poleward and eastward of it. We suggest that the upward field‐aligned currents related to the bright spiral arms are largely balanced by adjacent downward currents. The electric fields associated with the connecting Pedersen currents are consistent with the counter‐clockwise motion. An important additional ingredient in the observed configuration is an eastward directed flow field, which is the generator of an additional upward current and possibly crucial for the spiral formation. Electric field data from literature throw confusing light on the propagation of a spiral, whether like a vessel in the ocean or by incorporating the magnetic flux ahead of it.
Read full abstract