Developmental dyslexia is most commonly associated with phonological processing difficulties. However, children with dyslexia may experience poor speech-in-noise perception as well. Although there is an ongoing debate whether a speech perception deficit is inherent to dyslexia or acts as an aggravating risk factor compromising learning to read indirectly, improving speech perception might boost reading-related skills and reading acquisition. In the current study, we evaluated advanced speech technology as applied in auditory prostheses, to promote and eventually normalize speech perception of school-aged children with dyslexia, i.e., envelope enhancement (EE). The EE strategy automatically detects and emphasizes onset cues and consequently reinforces the temporal structure of the speech envelope. Our results confirmed speech-in-noise perception difficulties by children with dyslexia. However, we found that exaggerating temporal "landmarks" of the speech envelope (i.e., amplitude rise time and modulations)-by using EE-passively and instantaneously improved speech perception in noise for children with dyslexia. Moreover, the benefit derived from EE was large enough to completely bridge the initial gap between children with dyslexia and their typical reading peers. Taken together, the beneficial outcome of EE suggests an important contribution of the temporal structure of the envelope to speech perception in noise difficulties in dyslexia, providing an interesting foundation for future intervention studies based on auditory and speech rhythm training.