Iliopsoas tendonitis occurs in up to 30% of patients after hip resurfacing arthroplasty (HRA) and is a common reason for revision. The primary purpose of this study was to validate our novel computational model for quantifying iliopsoas impingement in HRA patients using a case-controlled investigation. Secondary purpose was to compare these results with previously measured THA patients.We conducted a retrospective search in an experienced surgeon's database for HRA patients with iliopsoas tendonitis, confirmed via the active hip flexion test in supine, and control patients without iliopsoas tendonitis, resulting in two cohorts of 12 patients. The CT scans were segmented, landmarked, and used to simulate the iliopsoas impingement in supine and standing pelvic positions. Three discrete impingement values were output for each pelvic position, and the mean and maximum of these values were reported. Cup prominence was measured using a novel, nearest-neighbour algorithm.The mean cup prominence for the symptomatic cohort was 10.7mm and 5.1mm for the asymptomatic cohort (p << 0.01). The average standing mean impingement for the symptomatic cohort was 0.1mm and 0.0mm for the asymptomatic cohort (p << 0.01). The average standing maximum impingement for the symptomatic cohort was 0.2mm and 0.0mm for the asymptomatic cohort (p << 0.01). Impingement significantly predicted the probability of pain in logistic regression models and the simulation had a sensitivity of 92%, specificity of 91%, and an AUC ROC curve of 0.95.Using a case-controlled investigation, we demonstrated that our novel simulation could detect iliopsoas impingement and differentiate between the symptomatic and asymptomatic cohorts. Interestingly, the HRA patients demonstrated less impingement than the THA patients, despite greater cup prominence. In conclusion, this tool has the potential to be used preoperatively, to guide decisions about optimal cup placement, and postoperatively, to assist in the diagnosis of iliopsoas tendonitis.
Read full abstract