Handedness-controllable macroscopic helices are needed for understanding the chirality transfer through scales and design of high-performance devices. Bottom-up self-assembly rarely affords macroscopic helical superstructures because of accumulating disorder that is difficult to avoid during hierarchical self-assembly. Here, we demonstrate that tetragold Au4 clusters can assemble into macroscopic helices at the centimeter scale. Halogen-bond induces hierarchical self-assembly from nanotubes to aslant stacked nanotubes and finally to macrohelices. Sacrificial template synthesis via solvent-corrosion sufficiently removes the embedded 1,3,5-trifluoro-2,4,6-triiodobenzene to produce helical skeletons. Homochiral macroscopic tendrils are controllably synthesized by chiral halogen bonding donors, allowing high-fidelity chiral amplification. This work contributes to the development of macroscopic helical superstructures by hierarchical assembly.
Read full abstract