Random and coherent noise attenuation is a significant aspect of seismic data processing, especially for pre-stack seismic data flattened by normal moveout correction or migration. Signal extraction is widely used for pre-stack seismic noise attenuation. Principle component analysis (PCA), one of the multi-channel filters, is a common tool to extract seismic signals, which can be realized by singular value decomposition (SVD). However, when applying the traditional PCA filter to seismic signal extraction, the result is unsatisfactory with some artifacts when the seismic data is contaminated by random and coherent noise. In order to directly extract the desired signal and fix those artifacts at the same time, we take into consideration the amplitude variation with offset (AVO) property and thus propose a robust polynomial PCA algorithm. In this algorithm, a polynomial constraint is used to optimize the coefficient matrix. In order to simplify this complicated problem, a series of sub-optimal problems are designed and solved iteratively. After that, the random and coherent noise can be effectively attenuated simultaneously. Applications on synthetic and real data sets note that our proposed algorithm can better suppress random and coherent noise and have a better performance on protecting the desired signals, compared with the local polynomial fitting, conventional PCA and a L1-norm based PCA method.