Detection of cyclic-di-adenosine monophosphate (c-di-AMP), a bacterial second messenger, by the host cytoplasmic surveillance pathway (CSP) is known to elicit Type I interferon responses critical for antimicrobial defense1–3. However, the mechanisms and role of c-di-AMP signaling in Mycobacterium tuberculosis virulence remain unclear. Here we show that resistance to tuberculosis (TB) requires CSP-mediated detection of c-di-AMP produced by M. tuberculosis and that levels of c-di-AMP modulate the fate of infection. We found that a di-adenylate cyclase (disA or dacA)4 over-expressing M. tuberculosis strain that secretes excess c-di-AMP activates the interferon regulatory factor (IRF) pathway with enhanced levels of IFN-β, elicits increased macrophage autophagy, and exhibits significant attenuation in mice. We show that c-di-AMP-mediated IFN-β induction during M. tuberculosis infection requires stimulator of interferon genes (STING)5-signaling. We observed that c-di-AMP induction of IFN-β is independent of the cytosolic nucleic acid receptor cyclic-GMP-AMP (cGAMP) synthase (cGAS)6–7, but cGAS nevertheless contributes substantially to the overall IFN-β response to M. tuberculosis infection. In sum, our results reveal c-di-AMP to be a key mycobacterial pathogen associated molecular pattern (PAMP) driving host Type I IFN responses and autophagy. These findings suggest that modulating the levels of this small molecule may lead to novel immunotherapeutic strategies against TB.
Read full abstract