This study presents the design and validation of a neonatal head phantom using innovative heterogeneous composite materials customized to replicate the X-ray attenuation properties of neonatal cranial structures. Analysis of Hounsfield Unit (HU) data from 338 neonatal head CT scans informed the design of epoxy resin-based composites with additives such as sodium bicarbonate, fumed silica, and acetone to simulate bone, brain matter, cerebrospinal fluid (CSF) and hyperdense abnormalities. The cranial bone substitute (60% epoxy resin, 40% sodium bicarbonate) achieved a density of 1.60 g/cm³, with HU values (574.67-608.04) closely matching clinical ranges. Brain matter (95% epoxy resin, 5% acetone) achieved HU values (35.27-43.61), aligning with clinical means, while the CSF-equivalent material (80% epoxy resin, 15% fumed silica, 5% acetone) matched neonatal CSF HU values (14.53-17.02). A mass substitute for hyperdense abnormalities exhibited HU values (56.16-61.07), enabling differentiation from normal brain. Validation included Monte Carlo simulations and experimental CT imaging, showing close agreement in linear attenuation coefficients, with deviations below 11% across energy levels. Mass attenuation coefficients from simulations and XCOM software were consistent, with deviations under 0.7%, confirming the materials dosimetric reliability. The phantom, with a cylindrical geometry (9 cm diameter, 10 cm length), provides accurate attenuation properties across 80-120 kVp energy levels, with deviations below 5% between experimental CT numbers and simulation data. This phantom offers a robust platform for neonatal imaging research, enabling impactful dose optimization and imaging protocol adjustment and supports improved diagnostic accuracy in pediatric imaging.
Read full abstract