Nanoparticles (NPs) have attracted considerable interest in numerous fields, including agriculture, medicine, the environment, and engineering. The use of green synthesis techniques that employ natural reducing agents to reduce metal ions and form NPs is of particular interest. This study investigates the use of green tea (GT) extract as a reducing agent for the synthesis of silver NPs (Ag NPs) with crystalline structure. Several analytical techniques, including UV-visible spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HR-TEM), and X-ray diffraction (XRD), were used to characterize the synthesized Ag NPs. The results of UV-vis revealed that the biosynthesized Ag NPs exhibited an absorbance plasmonic resonance peak at 470 nm. According to FTIR analyses, the attachment of Ag NPs to polyphenolic compounds resulted in a decrease in intensity and band shifting. In addition, the XRD analysis confirmed the presence of sharp crystalline peaks associated with face-centered cubic Ag NPs. Moreover, HR-TEM revealed that the synthesized particles were spherical and 50 nm in size on average. The Ag NPs demonstrated promising antimicrobial activity against Gram-positive (GP) bacteria, Brevibacterium luteolum and Staphylococcus aureus, and Gram-negative (GN) bacteria, Pseudomonas aeruginosa and Escherichia coli, with a minimal inhibitory concentration (MIC) of 6.4 mg/mL for GN and 12.8 mg/mL for GP. Overall, these findings suggest that Ag NPs can be utilized as effective antimicrobial agents.
Read full abstract