Abstract

In the present study, graphene oxide/silver (GO/Ag) nanocomposites were synthesized via a facile simple one pot chemical reduction method using ethylene glycol/sodium borohydrate (EG/NaBH4) as solvent and reducing agent. GO was selected as a substrate and stabilizer to prepare GO/Ag nanocomposites. The synthesized GO/Ag nanocomposites were characterized by a series of techniques. Highly monodispersed stable crystalline silver nanoparticles having a face-centered cubic (fcc) phase were confirmed by X-ray powder diffraction (XRD) on GO signature. Scanning electron microscopy images showed that Ag nanoparticles are deposited on the GO sheet with a narrow size distribution. Transmission electron microscopy observations revealed that large numbers of Ag nanoparticles were uniformly distributed on GO sheet and well separated with an average size of 18 nm. Ultraviolet–visible (UV–Vis) spectroscopic results showed the peak of GO and surface plasmon resonance (SPR) of Ag nanoparticles. The SPR property of GO/Ag nanocomposites showed that there was an interaction between Ag nanoparticles and GO sheet. The intensities of the Raman signal of GO/Ag nanocomposites are gradually increased with attachment of Ag nanoparticles i.e. there is surface-enhanced Raman scattering activity. Electrochemical investigations indicated that the nanocomposites possessed an excellent performance for detecting towards 4-nitrophenol. An application of the obtained GO/Ag nanocomposites as a catalyst in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4 was demonstrated. The GO/Ag nanocomposites exhibited high activity and stability for the catalytic reduction of 4-nitrophenol. The prepared GO/Ag nanocomposites act as photo-catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.