BackgroundThe present study aims to determine the structure of morbidity in workers contacting industrial aerosols, assess the timeliness of diagnosing dust-induced lung disease in major industrial centers, and optimize diagnostics for early detection of occupational lung diseases in workers exposed to industrial dust hazards.MethodsThe study on the structure and incidence of occupational lung diseases was carried out in 2016–2020 based on the Moscow Centre for Occupational Pathology data. For a more in-depth clinical examination, 114 patients who were first admitted to the Occupational Pathology Centre with diagnosed pneumoconiosis (PC), chronic dust-induced bronchitis (CDB), and chronic obstructive pulmonary disease (COPD) were selected. All patients were subjected to a complex clinical-functional, spirographic, echocardiographic, fibroscopic, radiological, and CT lung examination, with subsequent analysis of the results obtained. The pathology caused by exposure to industrial aerosols within the studied period was first diagnosed in 344 workers. Most patients (64%) with newly detected pathologies were 50–59 years of age, with work experience in adverse conditions of 21–25 years (41%).ResultsThe spirographic study of respiratory function revealed decreased forced vital capacity (FVC) indices in CDB and COPD patients. Changes in expiratory flow rates suggest occupational bronchitis at an earlier stage, whereas no apparent results were noted for the PC diagnosis. The results of fibroscopic examination in PC patients revealed atrophic processes of the bronchial mucosa in 46 (88.5%) of them, and 6 (11.5%) patients had a subtropic process. The results of echocardiographic examination allowed diagnosing pulmonary heart disease in 83 patients (72.8%). Of them, 42 (80.8%) were revealed in the group of patients with PC, 18 (50.0%) in the COB group, and 14 (53.8%) in the COPD group.ConclusionsComputed tomography (CT) detected pathological changes in 52 patients, while the X-ray examination in six people showed no evidence of lung destruction. CT scan also showed that the number of patients with fibrotic PC (including silicosis) in the study groups increased. Timely clinical and functional examination (spirography, fibroscopy, echocardiography) of patients allows detecting PC (including silicosis), CDB, and COPD at an early stage of disease progression.