The osmium-ferrocyanide method for staining of the sarcoplasmic reticulum (SR) was used for a morphological investigation of the various components of the SR in the atrioventricular node and bundle (AVNB) cells of guinea pig hearts. On the basis of light microscopic observations, the AVNB tissue in guinea pig hearts can be divided into five regions: atrionodal junction, midnode, proximal bundle, distal bundle, and bundle branches. Electron microscopic observations revealed two types of junctional SR (j-SR) saccules in the cells from all the regions of AVNB tissue. One is similar to that seen in the working cardiac cells, i.e., flattened saccules with junctional granules. The second type is dilated and contains electron-dense granular material throughout its lumen. The flattened type is seen more often than the dilated type in atrionodal junctional cells and midnode cells, whereas the dilated type occurs more often in distal bundle cells and bundle branch cells. In most cells from the atrionodal junction and midnode regions, the j-SR saccules are apposed more often to sarcolemmal areas associated with nonspecialized regions of intercellular junctions than to other sarcolemmal areas. This distribution was not found in the distal bundle and bundle branch cells. Free SR tubules around the myofilament bundles are poorly developed in the midnode cells, generally in accord with the extent of development of myofibrils. Z-tubules are found in cells from all regions but are poorly developed in midnode cells. Corbular SR vesicles are found in cells from all the regions of AVNB tissues but are rare in midnode cells. Thus, each of the regions in the AVNB tissue has a different, characteristic distribution of SR components. Because of their possible relationship to the regulation of the intracellular concentrations of calcium, these differences in SR morphology may contribute to the diverse physiological properties of the different regions of the AV node and bundle.