Nucleotide-induced conformational changes of the catalytic beta subunits play a crucial role in the rotary mechanism of F(1)-ATPase. To gain insights into the energetic bases that govern the recognition of nucleotides by the isolated beta subunit from thermophilic Bacillus PS3 (Tbeta), the binding of this monomer to Mg(II)-free and Mg(II)-bound adenosine nucleotides was characterized using high-precision isothermal titration calorimetry. The interactions of Mg(II) with free ATP or ADP were also measured calorimetrically. A model that considers simultaneously the interactions of Tbeta with Mg.ATP or with ATP and in which ATP is able to bind two Mg(II) atoms sequentially was used to determine the formation parameters of the Tbeta-Mg.ATP complex from calorimetric data. This analysis yielded significantly different DeltaH(b) and DeltaS(b) values in relation to those obtained using a single-binding site model, while DeltaG(b) was almost unchanged. Published calorimetric data for the titration of Tbeta with Mg.ADP [Perez-Hernandez, G., et al. (2002) Arch. Biochem. Biophys. 408, 177-183] were reanalyzed with the ternary model to determine the corresponding true binding parameters. Interactions of Tbeta with Mg.ATP, ATP, Mg.ADP, or ADP were enthalpically driven. Larger differences in thermodynamic properties were observed between Tbeta-Mg.ATP and Tbeta-ATP complexes than between Tbeta-Mg.ADP and Tbeta-ADP complexes or between Tbeta-Mg.ATP and Tbeta-Mg.ADP complexes. These binding data, in conjunction with those for the association of Mg(II) with free nucleotides, allowed for a determination of the energetic effects of the metal ion on the recognition of adenosine nucleotides by Tbeta [i.e., Tbeta.AT(D)P + Mg(II) right harpoon over left harpoon Tbeta.AT(D)P-Mg]. Because of a more favorable binding enthalpy, Mg(II) is recognized more avidly by the Tbeta.ATP complex, indicating better stereochemical complementarity than in the Tbeta.ADP complex. Furthermore, a structural-energetic analysis suggests that Tbeta adopts a more closed conformation when it is bound to Mg.ATP than to ATP or Mg.ADP, in agreement with recently published NMR data [Yagi, H., et al. (2009) J. Biol. Chem. 284, 2374-2382]. Using published binding data, a similar analysis of Mg(II) energetic effects was performed for the free energy change of F(1) catalytic sites, in the framework of bi- or tri-site binding models.
Read full abstract