The conformational studies of polymers confined at the nanoscale remain challenging and controversial due to the limitations of characterization techniques. In this study, we utilized the high sensitivity of time-resolved fluorescence resonance energy transfer (trFRET) and a site-specific dye-labeling strategy to characterize the conformation of polymer chains confined in anodic aluminum oxide (AAO) nanopores. This strategy introduced a fluorescent donor (carbazole) and acceptor (anthracene) at the center of poly(butyl methacrylate) (PBMA) chains grown by atom transfer radical polymerization (ATRP). By quantitatively analyzing fluorescence decay through the Förster mechanism and the Drake-Klafter-Levitz (DKL) formalism, we can determine both the energy transfer efficiency and the spatial distribution of the dyes. This analysis revealed that the PBMA chains, with a molecular weight of 40 kDa, maintained their bulk-like conformation even when confined within nanopores as small as 10 nm in diameter. This study is the first to demonstrate the use of trFRET for investigating chain conformation in confined polymer systems, which can be generalized to other polymer types and polymer topologies in different confined geometries.
Read full abstract