Most Eley-Rideal abstraction reactions involve an energetic gas-phase atom reacting directly with a surface adsorbate to form a molecular product. Molecular projectiles are generally less reactive, may dissociate upon collision with the surface, and thus more difficult to prove that they can participate intact in abstraction reactions. Here we provide experimental evidence for direct reactions occurring between molecular N2 (+) and O2 (+) projectiles and surface-adsorbed D atoms in two steps: first, the two atoms of the diatomic molecule undergo consecutive collisions with a metal surface atom without bond rupture; and second, the rebounding molecule abstracts a surface D atom to form N2 D and O2 D intermediates, respectively, detected as ions. The kinematics of the collisional interaction confirms product formation by an Eley-Rideal reaction mechanism and accounts for inelastic energy losses commensurate with surface re-ionization. Such energetic hydrogenation of dinitrogen may provide facile activation of its triple bond as a first step towards bond cleavage.