Edge reconstructions of graphene nanoribbons and their stable defective configurations were identified by experimental characterization. First principles calculations are performed to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons. It is found that these two defective edge structures affect effectively the high stable nanostructure configuration and give rise to pronounced modifications on electronic bands, leading to the shift of Fermi level as well as the occurrence of resonant energies. Both of these two atomic reconstructions would limit the electron transport around the Fermi level, and result in the complete resonant backscattering taking place at different locations. The suppression of conductance is not only related with increasing defect size, but more sensitive to the distribution of defect state, and the modifications on the electronic bands that are influenced by the edge reconstructions.
Read full abstract