Atomic level studies of solid state surfaces performed in ultra-high vacuum (UHV) had already an energetic 15–20 years past when our research group in Szeged started working in this field in mid 1970s. Till then several very important methods had been developed, like UHV technology, commercially available electron and photoelectron spectroscopy techniques, etc. Characterization of metal and semiconductor (oxide) surfaces and their adsorption properties had already been widely studied. In any case, the last 40–50 years also witnessed great discoveries and exciting new techniques. Considering only the activity related to heterogeneous catalysis, the main focus of our research group, new breakthrough methods emerged like HREELS, RAIRS, SPM, NAPXPS, EXAFS, NEXAFS. Along this path, new experimental and theoretical approaches appeared like planar model catalysts and inverse catalysts, atomic level investigation and understanding of surface diffusion-controlled phenomena (particle growth and disruption, strong metal-support interaction (SMSI), decoration, spillover), atomic level identification of active sites, self-organized nano-systems, surface alloys and nanotemplates. It was great to participate in this magical activity for more than 50 years. Both internationally and locally in Szeged, in the last two decades, surface science has opened to the wide world of 2D materials like the semimetal graphene and the insulator hexagonal boron nitride. However, the formation of a mixed layer of C, B and N proved to be a difficult task due to the primary tendency for phase separation. In the present work, we report on a preparation method of honeycomb “BCN” materials on Rh(111) by using benzene/borazine mixtures as precursors. It was demonstrated that by a suitable choice of the growth parameters, the formation of large, separated graphene and h-BN islands can be avoided.
Read full abstract