A new asymmetric approach to the hydroxylactone (+)-(3aR,4R,6aS)-4-(hydroxymethyl)-3a,4-dihydro-3H-cyclopenta[b]furan-2(6aH)-one (1), a key synthetic building block for cis-1,2-disubstituted five-membered ring derivatives (i.e., isoprostanes, jasmonates, and clavulones), has been described. A remarkable control of the absolute and relative configuration of the three stereocenters was achieved. Thus, the use of the Trost's asymmetric allylic alkylation strategy secured highly enantioenriched (R)-3-(nitromethyl)cyclopent-1-ene (13), which was smoothly converted to (R)-cyclopent-2-enecarboxylic acid (15) in excellent yield and high enantiomeric purity (>98% ee). 6-exo-trig atom-transfer radical cyclizations of ((R)-cyclopent-2-enyl)methyl 2-iodoacetate (12) produced exclusively the desired cis-fused delta-lactone (4aR,7aR)-hexahydro-5-iodocyclopenta[c]pyran-3(1H)-one (11), which was subsequently elaborated to hydroxylactone 1 through a stereocontrolled Pd(II)-mediated lactonization reaction. En route to preclavulone A, a putative elusive intermediate in the biosynthesis of clavulones, the synthetic utility of compound 1 was demonstrated. The key feature in this synthesis was the installation of the lower side chain via the Knochel organozinc sp3-sp C-C coupling protocol.