Atmospheric noise in interferometric synthetic aperture radar (InSAR)-derived estimates of surface deformation often obscures real displacement signals, especially in mountainous regions. As climate change disproportionately impacts the mountain cryosphere, a reliable technique for atmospheric correction in high-relief terrain is increasingly important. We developed and implemented a statistical machine learning atmospheric correction approach that relies on the differing spatial and topographic characteristics of slow-moving periglacial features and atmospheric noise. Our correction is applied at the native spatial and temporal resolution of the InSAR data, does not require external atmospheric reanalysis data, and can correct both stratified and turbulent atmospheric noise.Using Sentinel-1 data from 2017 to 2022, we trained a convolutional neural network (CNN) on observed atmospheric noise from 330 short-baseline interferograms and observed displacement signals from time series inversion of 1322 interferograms. We applied our trained CNN to correct 251 additional interferograms over an out-of-region application area, which were inverted to create displacement time series. We used the Rocky Mountains in New Mexico, Colorado, and Wyoming as our training, validation, testing, and application areas. When applied to our testing dataset, our correction offered performance improvements of 131%, 208%, and 68% in structural similarity index measure over corrections using atmospheric reanalysis data, phase correlation with topography, and high-pass filtering, respectively. The CNN-corrected time series reveals previously obscured kinematic behavior of rock glaciers and other features in the application dataset. Our flexible, robust approach can be used to correct arbitrary InSAR data to analyze subtle surface deformation signals for a range of science and engineering applications.
Read full abstract