Abstract Near-surface wind is difficult to estimate using global numerical weather and climate models, because airflow is strongly modified by underlying topography, especially that of a country such as Switzerland. In this article, we use a statistical approach based on deep learning and a high-resolution digital elevation model to spatially downscale hourly near-surface wind fields at coarse resolution from ERA5 reanalysis from their original 25-km grid to a 1.1-km grid. A 1.1-km-resolution wind dataset for 2016–20 from the operational numerical weather prediction model COSMO-1 of the national weather service MeteoSwiss is used to train and validate our model, a generative adversarial network (GAN) with gradient penalized Wasserstein loss aided by transfer learning. The results are realistic-looking high-resolution historical maps of gridded hourly wind fields over Switzerland and very good and robust predictions of the aggregated wind speed distribution. Regionally averaged image-specific metrics show a clear improvement in prediction relative to ERA5, with skill measures generally better for locations over the flatter Swiss Plateau than for Alpine regions. The downscaled wind fields demonstrate higher-resolution, physically plausible orographic effects, such as ridge acceleration and sheltering, that are not resolved in the original ERA5 fields. Significance Statement Statistical downscaling, which increases the resolution of atmospheric fields, is widely used to refine the outputs of global reanalysis and climate models, most commonly for temperature and precipitation. Near-surface winds are strongly modified by the underlying topography, generating local flow conditions that can be very difficult to estimate. This study develops a deep learning model that uses local topographic information to spatially downscale hourly near-surface winds from their original 25-km resolution to a 1.1-km grid over Switzerland. Our model produces realistic high-resolution gridded wind fields with expected orographic effects but performs better in flatter regions than in mountains. These downscaled fields are useful for impact assessment and decision-making in regions where global reanalysis data at coarse resolution may be the only products available.