Experiments were done to test the hypothesis that atmospheric CH(4) oxidizers in a well-drained alpine tundra soil are supported by CH(4) production from anaerobic microsites in the soil. Soil was subjected to 22 days of anaerobic conditions with elevated H(2) and CO(2) in order to stimulate methanogenesis. This treatment stimulated subsequent atmospheric CH(4) consumption, probably by increasing soil methanogenesis. After removal from anaerobic conditions, soils emitted CH(4) for up to 6 h, then oxidized atmospheric CH(4) at 111 (+/- 5.7) pmol (g dry weight)(-1) h(-1), which was more than 3 times the rate of control soils. Further supporting our hypothesis, additions of lumazine, a highly specific inhibitor of methanogenesis, prevented the stimulation of atmospheric CH(4) oxidation by the anaerobic treatment. The method used to create anaerobic conditions with elevated H(2) and CO(2) also elevated headspace CH(4) concentrations. However, elevated CH(4) concentrations under aerobic conditions did not stimulate CH(4) oxidation as much as preexposure to H(2) and CO(2) under anaerobic conditions. Anaerobic conditions created by N(2) flushing did not stimulate atmospheric CH4 oxidation, probably because N2 flushing inhibited methanogenesis by removing necessary precursors for methane production. We conclude that anaerobic conditions with elevated H(2) and CO(2) stimulate atmospheric CH(4) oxidation in this dry alpine tundra soil by increasing endogenous CH(4) production. This effect was prevented by inhibiting methanogenesis, indicating the importance of endogenous CH(4) production in a CH(4-) consuming soil.
Read full abstract