Several insects have specialised on using Brassicaceae as host plants. Therefore, they evolved metabolic pathways to cope with the defensive glucosinolate–myrosinase system of their diet. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), incorporate various glucosinolates from their hosts into their haemolymph. The ability to sequester these metabolites makes A. rosae a useful model system to study mechanisms of glucosinolate metabolism in this species compared to other specialists, and to study effects of sawfly feeding on levels of glucosinolates and their hydrolysing enzymes in plants. The levels of plant metabolites might in turn directly affect the performance of the insect. On the one hand, costs for glucosinolate uptake and avoidance of myrosinase activity were postulated. On the other hand, sequestration of glucosinolates can be part of the insect’s defence against several predators. Here, the findings on glucosinolate metabolic pathways are compared between different herbivores and the sawfly. The impact of different glucosinolate levels and myrosinase activities on the performance of A. rosae is discussed. Furthermore, effects of feeding by A. rosae larvae on the chemical composition and enzyme activities of various Brassicaceae species are summarised. Induction patterns vary not only between different plant species and cultivars but also due to the inducing agent. Finally, the plant–herbivore interactions are discussed with regard to the sawflies’ defence abilities against different carnivore guilds.
Read full abstract