For bounded domains Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega $$\\end{document} with Lipschitz boundary Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Gamma $$\\end{document}, we investigate boundary value problems for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary conditions. Using form methods, we begin by showing general results for an even wider class of operators of type A=B∗B0-NbBγ,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\mathcal {A}}=\\begin{pmatrix} B^*B & 0 \\\\ -{\\mathscr {N}}^{\\mathfrak {b}}B & \\gamma \\end{pmatrix}, \\end{aligned}$$\\end{document}where B is associated to a quadratic form b\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathfrak {b}}$$\\end{document} and Nb\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathscr {N}}^{{\\mathfrak {b}}}$$\\end{document} an abstractly defined co-normal Neumann trace. Even in this general setting, we prove generation of an analytic semigroup on the product space H:=L2(Ω)×L2(Γ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathcal {H}}:=L^2(\\Omega ) \ imes L^2(\\Gamma )$$\\end{document}. Using recent results concerning weak co-normal traces, we apply our abstract theory to the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for operators in divergence form B=-divQ∇\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$B=-\\mathop {{div} }Q \ abla $$\\end{document} with Q∈C1,1(Ω¯,Rd×d),\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Q \\in C^{1,1}({\\overline{\\Omega }},{\\mathbb {R}}^{d\ imes d}),$$\\end{document} also obtaining Hölder-regularity of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.