Abstract In this paper, we study the quasilinear Schrödinger equation - Δ u + V ( x ) u - γ 2 ( Δ u 2 ) u = | u | p - 2 u {-\Delta u+V(x)u-\frac{\gamma}{2}(\Delta u^{2})u=|u|^{p-2}u} , x ∈ ℝ N {x\in\mathbb{R}^{N}} , where V ( x ) : ℝ N → ℝ {V(x):\mathbb{R}^{N}\to\mathbb{R}} is a given potential, γ > 0 {\gamma>0} , and either p ∈ ( 2 , 2 * ) {p\in(2,2^{*})} , 2 * = 2 N N - 2 {2^{*}=\frac{2N}{N-2}} for N ≥ 4 {N\geq 4} or p ∈ ( 2 , 4 ) {p\in(2,4)} for N = 3 {N=3} . If γ ∈ ( 0 , γ 0 ) {\gamma\in(0,\gamma_{0})} for some γ 0 > 0 {\gamma_{0}>0} , we establish the existence of a positive solution u γ {u_{\gamma}} satisfying max x ∈ ℝ N | γ μ u γ ( x ) | → 0 {\max_{x\in\mathbb{R}^{N}}|\gamma^{\mu}u_{\gamma}(x)|\to 0} as γ → 0 + {\gamma\to 0^{+}} for any μ > 1 2 {\mu>\frac{1}{2}} . Particularly, if V ( x ) = λ > 0 {V(x)=\lambda>0} , we prove the existence of a positive classical radial solution u γ {u_{\gamma}} and up to a subsequence, u γ → u 0 {u_{\gamma}\to u_{0}} in H 2 ( ℝ N ) ∩ C 2 ( ℝ N ) {H^{2}(\mathbb{R}^{N})\cap C^{2}(\mathbb{R}^{N})} as γ → 0 + {\gamma\to 0^{+}} , where u 0 {u_{0}} is the ground state of the problem - Δ u + λ u = | u | p - 2 u {-\Delta u+\lambda u=|u|^{p-2}u} , x ∈ ℝ N {x\in\mathbb{R}^{N}} .
Read full abstract