Asymmetric troposphere modeling is crucial in Precise Point Positioning (PPP). The functional model of the asymmetric troposphere has been thoroughly studied, while the stochastic model lacks discussion. Currently, there is no suitable stochastic model for asymmetric tropospheric conditions, potentially degrading the positioning accuracy and the reliability of Zenith Total/Wet Delay (ZTD/ZWD) estimates. This paper introduces an Azimuth-Dependent Weighting (ADW) scheme that utilizes information from asymmetric mapping functions to adaptively weight Global Navigation Satellite System (GNSS) observations affected by azimuth-dependent errors. The concept of ADW has been validated using Numerical Weather Prediction data and International GNSS Service data. The results indicate that ADW effectively improves the coordinate repeatability of the PPP solution by approximately 10%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$10\\%$$\\end{document} in the horizontal and 20%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$20\\%$$\\end{document} in the vertical direction. Additionally, ADW appears to be capable to improve the ZWD estimates during the PPP convergence period and yields smoother ZWD estimates. Consequently, it is recommended to adopt this new weighting scheme in PPP applications when an asymmetric mapping functions is employed.
Read full abstract