AbstractA procedure is developed which allows to treat arbitrary periodic initiation profiles (asymmetric and symmetric triangle profiles, sinusoidal profiles, Gaussian profiles etc.) in pseudostationary radical polymerization. Using an iterative method these profiles are transformed into the (likewise periodic) radical profiles and into the chain‐length distributions of the resulting polymer in case of termination by disproportionation. These distributions are analysed for the position of their inflection points which may be used for experimental determination of the elementary rate constant of chain propagation kp. It turned out that for all profiles that have at least one discontinuity (e.g. asymmetric triangle profiles) the position of the point of inflection is a correct measure of kp for a conveniently wide range of experimental parameters. In case of profiles without discontinuity (symmetric triangle profiles, sinusoidal and Gaussian profiles) the position of the inflection point is shifted to lower values which means that the kp values determined on this basis will be a little too small. In most cases, however, the error introduced by this fact will not exceed the overall error of the experiment so that in practice the method of determining kp in pseudostationary polymerization is not restricted to those profiles which exhibit discontinuities.
Read full abstract