The interfacial nature of the electric double layer (EDL) assumes that electrode surface morphology significantly impacts the EDL properties. Since molecular-scale roughness modifies the structure of EDL, it is expected to disturb the overscreening effect and alter differential capacitance (DC). In this paper, we present a model that describes EDL near atomically rough electrodes with account for short-range electrostatic correlations. We provide numerical and analytical solutions for the analysis of conditions for the overscreening breakdown and DC shift estimation. Our findings reveal that electrode surface structure leads to DC decrease and can both break or enhance overscreening depending on the relation of surface roughness to electrostatic correlation length and ion size asymmetry.
Read full abstract