Abstract

A size-asymmetric mean-field theory with ionic interactions is developed for the electric double layer of room temperature ionic liquid (IL) electrolytes, based on the previous work on non-interacting ions (Y. Han et al., J. Phys.: Condens. Matter, 2014, 26, 284103). By solving the modified Poisson-Boltzmann equation with some simplified assumptions following a recent work (Z. A. H. Goodwin et al., Electrochim. Acta, 2017, 225, 190-197), an analytical expression of differential capacitance can be derived, with a scaled electrode potential due to the ionic interactions. Compared with non-interacting ions, the main effect of ionic interactions is the insufficient screening of the electrode potential, and this depresses the differential capacitance compared with the non-interactive case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.