In a traditional electronic auction, the centralized auctioneer and decentralized bidders are in an asymmetric structure, where the auctioneer has more ability to decide the auction result. This asymmetric auction structure is not fair to the participants and not suitable for data auctions in the Internet of Things (IoT). The blockchain-based auction system, with participant equality and fairness, is typically symmetrical and particularly suitable for IoT data sharing. However, when applied to IoT data sharing in reality, it faces privacy and efficiency problems. In this context, how to guarantee privacy and break the inherent performance bottleneck of blockchain is still a major challenge. In this paper, a consensus-based distributed auction scheme is proposed for data sharing, which enforces privacy preservation and collusion resistance. A reverse auction-based decentralized data trading model is introduced to solve the trust problem without a centralized auctioneer, where bidders reach consensus on the auction result. Specifically, we devise a differentially private auction mechanism to incentivize data owners to participate in data sharing. An effective hybrid consensus algorithm is constructed among bidders to reach consensus on the auction result with improved security and efficiency. Theoretical analysis shows that the proposed scheme ensures the properties of privacy preservation, incentive compatibility and collusion resistance. Experimental results reveal that the proposed mechanism guarantees the data sharing efficiency and has certain scalability.