The study of new dipolar A-π-D molecules, which have an acceptor (A) and donor (D) charge joined by a conjugate bridge, have been an attention focus in the recent years due their different properties. In the current work, a molecular system has been modified in order to compare the effect on properties, such as quantum yield. Thus, two series were generated (alkyl- and alkoxy-substituted) to determine if molecules with tertiary asymmetric amines change their optical properties and whether quantum yield is affected. The different products have been characterized by several techniques such as UV–Vis spectrophotometry, elemental analysis, NMR, FT-IR, mass spectroscopy and fluorescence spectroscopy. Furthermore, their behavior in eight organic solvents, dichloromethane, tetrahydrofuran, ethyl acetate, 1,4-dioxane, acetone, acetonitrile, dimethylformamide and dimethylsulfoxide were experimentally and theoretically studied. The quantum yields were higher for the alkyl-substituted series. Theoretically, the dihedral angles formed between the tertiary amine and carbonyl group moieties have a correlation with quantum yield values, helping to explain why they are higher in non-polar solvents. Consequently, the maximum quantum yield was obtained with (E)-2-cyano-3-(5-((E)-2-(9,9-diethyl-7-(methyl(phenyl)amino)-9H-fluoren-2-yl) vinyl)thiophen-2-yl)acrylic acid (M8-1) in 1,4-dioxane, reaching 98.8%.
Read full abstract