We present spatially resolved kinematics and global stellar populations and mass-to-light ratios for a sample of 39 dwarf early-type (dE) galaxies in the Virgo cluster studied as part of the SMAKCED stellar absorption-line spectroscopy and imaging survey. This sample is representative of the early-type population in the absolute magnitude range -19.0 < M_r < -16.0. For each dE, we measure the rotation curve and velocity dispersion profile and fit an analytic function to the rotation curve. We study the significance of the departure of the rotation curve from the best fit analytic function (poorly fit) and of the difference between the approaching and receding sides of the rotation curve (asymmetry). We find that 62 +/- 8 % (23 out of the 39) of the dEs have a significant anomaly in their rotation curve. Analysis of the images reveals photometric anomalies for most galaxies. However, there is no clear correlation between the significance of the photometric and kinematic anomalies. We measure age-sensitive and metallicity-sensitive Lick spectral indices and find a wide range of ages and metallicities. We also find that 4 dEs have emission partially filling in the Balmer absorption lines. Finally, we estimate the total masses and dark matter fractions of the dEs. They have a median total mass and dark matter fraction within the Re of log Me = 9.1 +/- 0.2 and f_DM = 46 +/- 18 %. We plot several scaling relations and show that dEs seem to be the bridge between massive early-type and dwarf spheroidal galaxies.