Diversion of oil sources for biodiesel production has been gaining importance to meet the environmental concerns and energy demand. The free fatty acid (FFA) content of the feedstock is a significant factor in biodiesel production. The FFA values determine the complexity of the biodiesel production. Until date, an experimental procedure has been used to determine the FFA concentration of an oil source; this method is dependent on titration, which is a laborious process involving significant volumes of chemicals. Hence, in the present study, an attempt was made to develop a device for the identification of FFA of the oils. Waste cooking oil samples subjected to wide range of cooking conditions like cooking time, temperature, type of food are collected from different food outlets. Subsequently, the composition of oil samples and the variation in their quality were analysed using gas chromatography flame ionization detector (GC – FID). Biodiesel is prepared from the oil samples through transesterification and the impact of FFA and their respective methyl esters in the quality and properties have been investigated. The properties of biodiesel were determined as per ASTM standards. The study was further extended to correlate the properties of biodiesel with the composition of the oil from which it was derived. The analysis evidently proved the dependence of biodiesel properties on the FFA percentage and the composition of the oil. The results have been further substantiated with the performance and emission characteristics of internal combustion engine fuelled with the prepared biodiesel samples.