Assessing the extent of the intramedullary lesion after spinal cord injury (SCI) might help to improve prognostication. However, because the neurological level of injury impacts the recovery potential of SCI patients, the question arises whether lesion size parameters and predictive models based on those parameters are affected as well. In this retrospective observational study, the extent of the intramedullary lesion between individuals who sustained cervical and thoracolumbar SCI was compared, and its relation to clinical recovery was assessed. In total, 154 patients with subacute SCI (89 individuals with cervical lesions and 65 individuals with thoracolumbar lesions) underwent conventional clinical magnetic resonance imaging 1 month after injury and clinical examination at 1 and 12 months. The morphology of the focal lesion within the spinal cord was manually assessed on the midsagittal slice of T2-weighted magnetic resonance images and compared between cervical and thoracolumbar SCI patients, as well as between patients who improved at least one American Spinal Injury Association Impairment Scale (AIS) grade (converters) and patients without AIS grade improvement (nonconverters). The predictive value of lesion parameters including lesion length, lesion width, and preserved tissue bridges for predicting AIS grade conversion was assessed using regression models (conditional inference tree analysis). Lesion length was two times longer in thoracolumbar compared with cervical SCI patients (F = 39.48, p < 0.0001), whereas lesion width and tissue bridges width did not differ. When comparing AIS grade converters and nonconverters, converters showed a smaller lesion length (F = 5.46, p = 0.021), a smaller lesion width (F = 13.75, p = 0.0003), and greater tissue bridges (F = 12.87, p = 0.0005). Using regression models, tissue bridges allowed more refined subgrouping of patients in AIS groups B, C, and D according to individual recovery profiles between 1 month and 12 months after SCI, whereas lesion length added no additional information for further subgrouping. This study characterizes differences in the anteroposterior and craniocaudal lesion extents after SCI. The two times greater lesion length in thoracolumbar compared with cervical SCI might be related to differences in the anatomy, biomechanics, and perfusion between the cervical and thoracic spines. Preserved tissue bridges were less influenced by the lesion level while closely related to the clinical impairment. These results highlight the robustness and utility of tissue bridges as a neuroimaging biomarker for predicting the clinical outcome after SCI in heterogeneous patient populations and for patient stratification in clinical trials.
Read full abstract