The timing of the emplacement of ore-bearing melts in the process of evolution of flood-basalt magmatism in the Noril’sk District is discussed. The current models of ore formation consider the emplacement of ore-bearing intrusions either under the conditions of a closed magmatic system as a product of a self-dependent magmatic event, or under the conditions of an open magmatic system, where intrusions are parts of the conduits feeding lava flows. In both cases, the composition of the initial magma, the content of volatile components therein, and the contribution of country rock assimilation are important for the development of a genetic model. The relationships between lavas and intrusions are exemplified in the South Maslov intrusion, which cuts through the rocks of the Nadezhdinsky Formation. No geological evidence for links of lavas to intrusions has been established. Substantial difference in geochemistry (Ti contents, Gd/Yb and La/Sm ratios, etc.) of the tuff and lava sequence on the northern shore of Lake Lama and the Maslov intrusions are demonstrated. It is concluded that the Noril’sk deposits were formed as products of emplacement of self-dependent portion of magma in the post-lower Nadezhdinsky time. The melt composition determined from melt inclusions in olivine corresponds to high-Mg tholeiitic basalt (up to 7–8 wt % MgO) containing up to 1 wt % H2O and 0.3 wt % Cl and undersaturated with sulfur. The fluid regime of flood-basalt volcanism had no anomalous features—the fluid was aqueous-carbon dioxide. The melts of ore-bearing and barren intrusions had similar concentrations of volatile components. The distribution of major and trace elements in intrusive rocks of the contact zone with the lower part of the Nadezhdinsky Formation characterized by high (La/Sm)N ratio in comparison with gabbroic rocks (2.8–2.3 and 1.3–1.6, respectively), indicates that contamination of the initial melt only took place in a narrow (1 m) contact zone or did not develop at all. New data on isotopic compositions of Sr (87Sr/86Sr)251 = 0.7089 and Pb (206Pb/204Pb = 20.877–24.528 in anhydrite confirm that local assimilation did not play a substantial role in the formation of rock and ores. On the basis of chemical composition of ore-forming intrusions, their isotopic characteristics, and the composition of melt inclusions in olivine, it is suggested that the lower crustal rocks were a major source of ore-bearing magmas.
Read full abstract