In this study, a multi-source data fusion method was proposed for the development of a Hybrid seismic hazard model (HSHM) in China by using publicly available data of the 5th Seismic Ground Motion Parameter Zoning Map (NSGM) and historical seismic catalogues and integrating with modern ground motion prediction equations (GMPEs). This model incorporates the characteristics of smoothed seismicity and areal sources for regional seismic hazard assessment. The probabilistic seismic hazard for the North China Plain earthquake belt was investigated through sensitivity analysis related to the seismicity model and GMPEs. The analysis results indicate that the Hybrid model can produce a consistent result with the NSGM model in many cases. However, the NSGM model tends to overestimate hazard values in locations where no major events have occurred and underestimate hazard values in locations where major events have occurred. The Hybrid model can mitigate the degree of such biases. Compared to the modern GMPEs, the GMPE with epicentral distance measures significantly underestimate the seismic hazard under near-field and large-magnitude scenarios. In addition, a comparison of the uniform hazard spectra (UHS) obtained by the models, with China’s design spectrum, shows that the current design spectrum is more conservative than the calculated UHS.
Read full abstract