To develop a robust machine learning prediction model for the automatic screening and diagnosis of obstructive sleep apnea (OSA) using five advanced algorithms, namely Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), Support Vector Machine (SVM), Light Gradient Boosting Machine (LightGBM), and Random Forest (RF) to provide substantial support for early clinical diagnosis and intervention. We conducted a retrospective analysis of clinical data from 439 patients who underwent polysomnography at the Affiliated Hospital of Xuzhou Medical University between October 2019 and October 2022. Predictor variables such as demographic information [age, sex, height, weight, body mass index (BMI)], medical history, and Epworth Sleepiness Scale (ESS) were used. Univariate analysis was used to identify variables with significant differences, and the dataset was then divided into training and validation sets in a 4:1 ratio. The training set was established to predict OSA severity grading. The validation set was used to assess model performance using the area under the curve (AUC). Additionally, a separate analysis was conducted, categorizing the normal population as one group and patients with moderate-to-severe OSA as another. The same univariate analysis was applied, and the dataset was divided into training and validation sets in a 4:1 ratio. The training set was used to build a prediction model for screening moderate-to-severe OSA, while the validation set was used to verify the model's performance. Among the four groups, the LightGBM model outperformed others, with the top five feature importance rankings of ESS total score, BMI, sex, hypertension, and gastroesophageal reflux (GERD), where Age, ESS total score and BMI played the most significant roles. In the dichotomous model, RF is the best performer of the five models respectively. The top five ranked feature importance of the best-performing RF models were ESS total score, BMI, GERD, age and Dry mouth, with ESS total score and BMI being particularly pivotal. Machine learning-based prediction models for OSA disease grading and screening prove instrumental in the early identification of patients with moderate-to-severe OSA, revealing pertinent risk factors and facilitating timely interventions to counter pathological changes induced by OSA. Notably, ESS total score and BMI emerge as the most critical features for predicting OSA, emphasizing their significance in clinical assessments. The dataset will be publicly available on my Github.
Read full abstract