We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time. Here, we demonstrate steric stabilization of silica colloids in conventional liquid electrolyte via surface-tethered PMMA brushes, synthesized via surface-initiated atom transfer radical polymerization. The PMMA increases the magnitude of the shear thickening response, compared to the uncoated particles, from 0.311 to 2.25 Pa s. Ultrasmall-angle neutron scattering revealed a reduction in aggregation of PMMA-coated silica nanoparticles compared to bare silica nanoparticles in solution under shear and at rest, suggesting good stabilization. Conductivity tests of shear thickening electrolytes (30 wt % solids in electrolyte) at rest were performed with interdigitated electrodes positioned near the meniscus of electrolytes over the course of 24 h to track supernatant formation. Conductivity of electrolytes with bare silica increased from 10.1 to 11.6 mS cm-1 over 24 h due to flocculation. In contrast, conductivity of electrolytes with PMMA-coated silica remained stable at 6.1 mS cm-1 over the same time period, suggesting good colloid stability.