Photocatalysts and noble metals have attracted considerable attention for their potential in addressing global environmental pollution through photochemical processes. At low temperatures, multifunctional self-cleanable wool fabric was developed through green photo-sonosynthesis of N–Ag/TiO2/ZnO. A narrower bandgap of the hybrid photocatalyst, the surface plasmonic resonance effect of silver nanostructures, and nitrogen doping resulted in synergistically enhanced self-cleaning activity. The self-cleaning activity was evaluated by monitoring the discoloration of methylene blue stains on the wool fabric exposed to natural sunlight, using CIELAB color space and ΔE measurements. The ΔE value of the N–Ag/TiO2/ZnO-sonicated wool was superior, showing a value of 45.9 compared to 15.7 for the control and 28.7 for the sample coated by the stirrer. Furthermore, the nanocomposite construction improved tensile strength, enhanced fabric hydrophilicity, and reduced the yellowness index. Additionally, the synthesis of TiO2 and silver particles on ZnO particles increased surface resistance to acid, reducing ZnO acid solubility. The reflectance of the non-treated wool ranged from 5 to 20 % within 200–380 nm, while the reflectance of the Ag/TiO2/ZnO-sonicated sample remained constant at 4 %, exhibiting protection against UV rays. AATCC test revealed 100 % bacteria reduction against E. coli and S. aureus and 99 % against C. albicans fungus for N–Ag/TiO2/ZnO-sonicated sample. Moreover, cell culture assays demonstrated a viability of over 70 %, indicating non-cytotoxicity.
Read full abstract