Adsorption of asphaltenes onto a polar substrate (e.g., a mineral) was modeled with dissipative particle dynamics (DPD) simulations, using continental asphaltene models. The adsorption mechanisms in 10–20% wt, of asphaltene in toluene/ heptane solutions were studied (well above the solubility limit). The structure in the adsorbed layer was highly sensitive to the presence of polar groups in the alkyl side chains and heteroatom content in the aromatic ring structure. Four types of asphaltene models were used: completely apolar (zero adsorption), apolar chains and polar heteroatoms, polar chains and no heteroatoms, and polar chains and heteroatoms (maximum adsorption). One hundred asphaltene monomers were distributed homogeneously in the solvent initially, in a ∼(10 nm)3 domain.Asphaltene monomers adsorbed irreversibly on the substrate via the polar group in the side chains, resulting in an average perpendicular orientation of the aromatic rings relative to the substrate. More frequent π–π stacking of the aromatic rings occurred for less solubility (more heptane), as in aggregates. With apolar side chains, only the heteroatoms in the aromatic ring structure had affinity to the substrate, but the ring plane did not have any preferred direction.An important finding is that the aromatic ring assemblies “shielded” the substrate and polar groups that were anchored to the substrate, resulting in an effective non-polar surface layer seen by asphaltenes in the bulk, leading to much lower adsorption probability of the remaining asphaltenes. This “adsorption termination” effect leads to mono-layer formation. Continued adsorption with multilayering and reversible nanoaggregate adsorption occurred when both side chains in the model asphaltene (located on opposite sides of the aromatic sheet) contained polar groups, with a higher probability of exposing further polar groups to the bulk asphaltene. The general conclusion is that the number and position of the polar groups in side chains determine to a large degree the adsorption and aggregation behavior/efficiency of (continental) asphaltenes, in line with experimental evidence. The heteroatoms in the aromatic ring structure plays a more passive role in this context, only by providing organization via more π–π stacking in the adsorbed layer, and in aggregates.