Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks. This study investigates the binding affinity of four amino acids including glycine (Gly), proline (Pro), lysine (Lys), and aspartic acid (Asp) to the hydroxyapatite (HAP) (100) surface through molecular dynamics simulations. Our findings reveal that aspartic acid exhibits the most energetically favorable binding affinity, attributed to its additional carboxylate group (-COO-), which facilitates stronger interactions with Ca2+ ions on the HAP surface compared to other amino acids with single carboxylate groups. This highlights the critical role of specific functional groups in modulating binding strength, emphasizing that the presence of multiple binding sites in amino acids enhances binding stability. Interestingly, the study also uncovers the significance of water-mediated interactions, as the compact water layer above the HAP surface acts as a barrier, complicating direct binding and underscoring the need to consider solvation effects in simulations. Glycine, due to its small size, demonstrates a unique ability to penetrate this tightly bound water monolayer, suggesting that molecular size influences binding dynamics. These simulations offer detailed insights into the atomic-level interactions, providing a deeper understanding of binding affinity and stability. These insights are pertinent for designing peptides or proteins with enhanced interactions with biomaterials, particularly in mimicking natural bone-binding processes.
Read full abstract