Recent concerns regarding climate change and rising energy costs have dramatically increased interest in using alternative energies, especially biomass energy which is carbon neutral. Hemp is among the fastest-growing plants with unique fiber characteristics. The objective of this study was to investigate the physical and chemical properties of hemp stalks of seven different clones and to assess their feasibility as a sustainable bioenergy resource. Seven clones (KU03, KU18, KU27, KU45, KU49, RPF1, and RPF2) of four-month-old hemp (Cannabis sativa) were used in this work. Physical properties, volatile content, fixed carbon, ash content, calorific value, chemical composition, ash composition, and metal element of the samples were investigated. The results revealed that hemp stalk had desirable fuel characteristics with high volatile substance, high heating value, low ash content, very low nitrogen content, and non-detectable sulfur. Selecting well-adapted clones and appropriate technology which can convert the hemp stalks to suitable bioenergy forms are important aspects of bioresource management. Based on our findings, some selected hemp clone biomass possessed excellent characteristics and great potential to be used as raw material for bioenergy production.
Read full abstract